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ABSTRACT: Drug failures due to unforeseen adverse effects at clinical trials pose health risks for the participants and 

lead to substantial financial losses. Side effect prediction algorithms have the potential to guide the drug design process. 

LINCS L1000 dataset provides a vast resource of cell line gene expression data perturbed by different drugs and creates a 

knowledge base for context specific features. The state-of-the-art approach that aims at using context specific information 

relies on only the highquality experiments in LINCS L1000 and discards a large portion of the experiments. In this study, 

our goal is to boost the prediction performance by utilizing this data to its full extent. We experiment with 5 deep learning 

architectures. We find that a multi-modal architecture produces the best predictive performance among multi-layer 

perceptron-based architectures when drug chemical structure (CS), and the full set of drug perturbed gene expression 

profiles (GEX) are used as modalities. Overall, we observe that the CS is more informative than the GEX. A Convolutional 

neural network-based model that uses only SMILES string representation of the drugs achieves the best results and 

provides 13:0% macro-AUC and 3:1% micro-AUC improvements over the state-of-the-art. We also show that the model is 

able to predict side effect-drug pairs that are reported in the literature but was missing in the ground truth side effect 

dataset. 

1.INTRODUCTION: 

 

Computational methods hold great promise for mitigating 

the health and financial risks of drug development by 

predicting possible side effects before entering into the 

clinical trials. Several learning based methods have been 

proposed for predicting the side effects of drugs based on 

various features such as: chemical structures of drugs [25, 

1, 23, 8, 19, 34, 17, 9, 2, 5], drug-protein interactions [35, 

33, 8, 19, 34, 17, 37, 2, 15, 36], protein-protein interactions 

(PPI) [8, 9], activity in metabolic networks [38, 26], 

pathways, phenotype information and gene annotations [8]. 

In parallel to the above mentioned approaches, recently, 

deep learning models have been employed to predict side 

effects: (i) [31] uses biological, chemical and semantic 

information on drugs in addition to clinical notes and case 

reports and (ii) [4] uses various chemical fingerprints 

extracted using deep architectures to compare the side 

effect prediction performance. While these methods have 

proven useful for predicting adverse drug reactions (ADRs 

– used\ interchangeably with drug side effects), the features 

they use are solely based on external knowledge about the 

drugs (i.e., drug-protein interactions, etc.) and are not cell 

or condition (i.e., dosage) specific. To address this issue 

,Wang et al. (2016) utilize the data from the LINCS L1000 

project [32]. This project profiles gene expression changes  

 

 

in numerous human cell lines after treating them with a  

large number of drugs and small-molecule compounds. By 

using the gene expression profiles of the treated cells, [32] 

provides the first comprehensive, unbiased, and cost-

effective prediction of ADRs. The paper formulates the 

problem as a multi-label classification task. Their results 

suggest that the gene expression profiles provide context-

dependent information for the side-effect prediction task. 

While the LINCS dataset contains a total of 473,647 

experiments for 20,338 compounds, their method utilizes 
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only the highest quality experiment for each drug to 

minimize noise. This means that most of the expression 

data are left unused, suggesting a potential room for 

improvement in the prediction performance. Moreover, 

their framework performs feature engineering by 

transforming gene expression features to enrichment 

vectors of biological terms. In this work, we investigate 

whether the incorporation of gene expression data along 

with the drug structure data can be leveraged better in a 

deep learning framework without the need for feature 

engineering. In this study, we propose a deep learning 

framework, Deep Side, for ADR prediction. Deep Side 

uses only (i) in vitro gene expression profiling experiments 

(GEX) and their experimental meta data (i.e., cell line and 

dosage - META), and (ii) the chemical structure of the 

compounds (CS). Our models train on the full LINCS 

L1000 dataset and use the SIDER dataset as the ground 

truth for drug - ADR pair labels [13]. We experiment with 

five architectures: (i) a multi-layer perceptron (MLP), (ii) 

MLP with residual connections (Res MLP), (iii) multi-

modal neural net- works (MMNN. Concat and MMNN. 

Sum), (iv) multi-task neural network (MTNN), and finally, 

(v) SMILES convolutional neural network (SMILES 

Conv). We present an extensive evaluation of the above-

mentioned architectures and investigate the contribution of 

different features. Our experiments show that CS is a 

robust predictor of side effects. The base MLP model, 

which uses CS features as input, produces _11% macro-

AUC and _2% micro- AUC improvement over the state-of-

the-art results provided in [32], which uses both GEX (high 

quality) and CS features. The multi-modal neural network 

model, which uses CS, GEX and META features and uses 

summation in the fusion layer (MMNN. Sum) achieves 

0:79 macro-AUC and 0:877 micro-AUC which is the best 

result among MLP based approaches. We also find out that 

when the chemical structure features are fully utilized in a 

complex model like ours, it overpowers the information 

that is obtained from the GEX dataset. The Convolutional 

neural network that only uses the SMILES string 

representation of the drug structures achieves the best 

result among all the proposed architectures with provides 

13:0% macro-AUC and 3:1% micro-AUC improvement 

over the state-of-the-art algorithm. Finally, inspecting the 

confident false positives predictions reveal side effects that 

are not reported in the ground truth dataset, but are indeed 

reported in the literature. Deep Side is implemented and 

released at http://github.com/OnurUner/DeepSide. 

 

2. LITERATURE SURVEY 

1) Drug Side Effect Prediction with Deep Learning 

Molecular Embedding in a Graph-of-Graphs Domain 

Abstract: Drug side effects (DSEs), or adverse drug 

reactions (ADRs), constitute an important health risk, given 

the approximately 197,000 annual DSE deaths in Europe 

alone. Therefore, during the drug development process, 

DSE detection is of utmost importance, and the occurrence 

of ADRs prevents many candidate molecules from going 

through clinical trials. Thus, early prediction of DSEs has 

the potential to massively reduce drug development times 

and costs. In this work, data are represented in a non-

euclidean manner, in the form of a graph-of-graphs 

domain. In such a domain, structures of molecule are 

represented by molecular graphs, each of which becomes a 

node in the higher-level graph. In the latter, nodes stand for 

drugs and genes, and arcs represent their relationships. This 

relational nature represents an important novelty for the 

DSE prediction task, and it is directly used during the 

prediction. For this purpose, the MolecularGNN model is 

proposed. This new classifier is based on graph neural 

networks, a connectionist model capable of processing data 

in the form of graphs. The approach represents an 

improvement over a previous method, called DruGNN, as 

it is also capable of extracting information from the graph-

based molecular structures, producing a task-based neural 

fingerprint (NF) of the molecule which is adapted to the 

specific task. The architecture has been compared with 

other GNN models in terms of performance, showing that 

the proposed approach is very promising. 

2) Drug side effect prediction through linear neighborhoods 

and multiple data source integration 

Abstract: predicting drug side effects is a critical task in the 

drug discovery, which attracts great attentions in both 

academy and industry. Although lots of machine learning 

methods have been proposed, great challenges arise with 

boom of precision medicine. On one hand, many methods 

are based on the assumption that similar drugs may share 

same side effects, but measuring the drug-drug similarity 

appropriately is challenging. One the other hand, 

multisource data provide diverse information for the 

analysis of side effects, and should be integrated for the 

high-accuracy prediction. In this paper, we tackle the side 

effect prediction problem through linear neighborhoods 

and multi-source data integration. In the feature space, 

linear neighborhoods are constructed to extract the drug-

drug similarity, namely “linear neighborhood similarity”. 

By transferring the similarity into the side effect space, 

known side effect information is propagated through the 
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similarity-based graph. Thus, we propose the linear 

neighborhood similarity method (LNSM), which utilizes 

single-source data for the side effect prediction. Further, 

we extend LNSM to deal with multisource data, and 

propose two data integration methods: similarity matrix 

integration method (LNSM-SMI) and cost minimization 

integration method (LNSM-CMI), which integrate drug 

substructure data, drug target data, drug transporter data, 

drug enzyme data, drug pathway data and drug indication 

data to improve the prediction accuracy. The proposed 

methods are evaluated on the benchmark datasets. The 

linear neighborhood similarity method (LNSM) can 

produce satisfying results on the single-source data. Data 

integration methods (LNSM-SMI and LNSM-CMI) can 

effectively integrate multi-source data, and outperform 

other state-of-the-art side effect prediction methods in the 

cross validation and independent test. The proposed 

methods are promising for the drug side effect prediction. 

3) Drug Side Effect Analyzer Using Machine Learning 

Abstract: People are dependent on medicinal drugs on one 

way or the other for every simple cause such as headache, 

cold etc. Every drug has a negative impact on a person's 

body. Some people are unaware of the side effects of the 

drugs and they consume it without prescription. Social 

network platforms such as twitter provide an opportunity 

for people to express themselves. Using twitter as the 

source of data, this paper aims to find the side effects of 

drugs with the help of machine learning algorithms.SVM 

(Support Vector Machine) algorithm is used for drug 

related classification with an accuracy of 75%.Sentiment 

analysis is performed using VADER (Valence Aware 

Dictionary for sentiment Reasoning) to handle negations, 

conjunctions and question marks present in the tweets. 

Keyword Extraction is performed using RAKE (Rapid 

Automatic Keyword Extraction) to get the side effects. 

4) Predicting Drug Side Effects Using Data Analytics and 

the Integration of Multiple Data Sources 

Abstract: The development of automated approaches 

employing computational methods using data from 

publicly available drugs datasets for the prediction of drug 

side effects has been proposed. This work presents the use 

of a hybrid machine learning approach to construct side 

effect classifiers using an appropriate set of data features. 

The presented approach utilizes the perspective of data 

analytics to investigate the effect of drug distribution in the 

feature space, categorize side effects into several intervals, 

adopt suitable strategies for each interval, and construct 

data models accordingly. To verify the applicability of the 

presented method in side effect prediction, a series of 

experiments were conducted. The results showed that this 

approach was able to take into account the characteristics 

of different types of side effects, thereby achieve better 

predictive performance. Moreover, different feature 

selection schemes were coupled with the modeling 

methods to examine the corresponding effects. 

Additionally, analyses were performed to investigate the 

task difficulty in terms of data distance and similarity. 

Examples of visualized networks of associations between 

drugs and side effects are also discussed to further evaluate 

the results. 

 

 

 

2.EXISTING SYSTMA  

drug-drug interaction (DDI) is defined as an association 

between two drugs where the pharmacological effects of a 

drug are influenced by another drug. Positive DDIs can 

usually improve the therapeutic effects of patients, but 

negative DDIs cause the major cause of adverse drug 

reactions and even result in the drug withdrawal from the 

market and the patient death. Therefore, identifying DDIs 

has become a key component of the drug development and 

disease treatment. In this study, an existing system, 

develops a method to predict DDIs based on the integrated 

similarity and semi-supervised learning (DDI-IS-SL). DDI-

IS-SL integrates the drug chemical, biological and 

phenotype data to calculate the feature similarity of drugs 

with the cosine similarity method. The Gaussian 

Interaction Profile kernel similarity of drugs is also 

calculated based on known DDIs. A semi-supervised 

learning method (the Regularized Least Squares classifier) 

is used to calculate the interaction possibility scores of 

drug-drug pairs. In terms of the 5-fold cross validation, 10-

fold cross validation and de novo drug validation, DDI-IS-

SL can achieve the better prediction performance than 

other comparative methods. In addition, the average 

computation time of DDI-IS-SL is shorter than that of other 

comparative methods. Finally, case studies further 

demonstrate the performance of DDI-IS-SL in practical 

applications. 

 

DISADVANTAGES: 

• The complexity of data: Most of the existing machine 

learning models must be able to accurately interpret large 

and complex datasets to detect an accurate Drug Side 

Effect. 
• Data availability: Most machine learning models require 

large amounts of data to create accurate predictions. If data 
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is unavailable in sufficient quantities, then model accuracy 

may suffer. 

• Incorrect labeling: The existing machine learning models 

are only as accurate as the data trained using the input 

dataset. If the data has been incorrectly labeled, the model 

cannot make accurate predictions. 

 

4.PROPOSED SYSTEM 

Multi-layer perception (MLP) Our MLP [22] model takes 

the concatenation of all input vectors and applies a series of 

fully-connected (FC) layers. Each FC layer is followed by 

a batch normalization layer [10]. We use ReLU activation 

[16], and dropout regularization [27] with a drop 

probability of 0:2. The sigmoid activation function is 

applied to the final layer outputs, which yields the ADR 

prediction probabilities. The loss function is defined as the 

sum of negative log- probabilities over ADR classes, i.e. 

the multi-label binary cross-entropy loss (BCE). An 

illustration of the architecture for CS and GEX features is 

given in this system. Residual multi-layer perceptron 

(ResMLP) The residual multi-layer perceptron (ResMLP) 

architecture is very similar to MLP, except that it uses 

residual-connections across the fully- connected layers. 

More specifically, the input of each intermediate layer is 

element-wise added to its output, before getting processed 

by the next layer. Such residual connections have been 

shown to reduce the vanishing gradient problem to a large 

extend [7]. This effectively allows deeper architectures, 

therefore, potentially learning more complex and 

parameter-efficient feature extractors. Multi-modal neural 

networks (MMNN) The multi-modal neural network 

approach contains distinct MLP sub-networks where each 

one extract features from one data modality only. The 

outputs of these sub-networks are then fused and fed to the 

classification block. For feature fusion, we consider two 

strategies: concatenation and summation. While the former 

one concatenates the domain-specific feature vectors to a 

larger one, the latter one performs element-wise 

summation. By definition, for summation based fusion, the 

domain-specific feature extraction sub-networks have to be 

designed to produce vectors of equivalent sizes. We refer 

to the concatenation and summation based MMNN 

networks as MMNN.Concat and MMNN.Sum, 

respectively. Multi-task neural network (MTNN) our 

multitask learning (MTL) based architecture aims to take 

the side effect groups obtained from the taxonomy of 

ADReCS into account. For this purpose, the approach 

defines shared and task-specific MLP sub-network blocks. 

The shared block takes the concatenation of GEX and CS 

features as input and outputs a joint embedding. Each task-

specific sub-network then converts the joint embedding 

into a vector of binary prediction scores for a set of inter-

related side-effect classes. 

 

ADVANTAGES 

The proposed system implemented many ml classifies for 

testing and training on datasets. 

The proposed system developed Convolutional neural 

networks (CNN) which are known to provide a powerful 

way of automatically learning complex features in vision 

tasks to find an accurate accuracy on the datasets. 

 

 

SYSTEM ARCHITECTURE 

 
Fig 1: System Architecture 

 

5. UML DIAGRAMS 

1. CLASS DIAGRAM 

Class diagram is a static diagram. It represents the static 

view of an application. Class diagram is not only used for 

visualizing, describing, and documenting different aspects 

of a system but also for constructing executable code of the 

software application. Class diagram describes the attributes 

and operations of a class and also the constraints imposed 

on the system. The class diagrams are widely used in the 

modeling of object oriented systems because they are the 

only UML diagrams, which can be mapped directly with 

object-oriented languages. It is also known as a structural 

diagram. Class diagram contains • Classes • Interfaces • 

Dependency, generalization and association. 
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Fig 5.1 shows the class diagram of the project 

1. USECASE DIAGRAM: 

Use Case Diagrams are used to depict the functionality of a 

system or a part of a system. They are widely used to 

illustrate the functional requirements of the system and its 

interaction with external agents (actors). In brief, the 

purposes of use case diagrams can be said to be as follows 

• Used to gather the requirements of a system. 

• Used to get an outside view of a system. 

• Identify the external and internal factors influencing the 

system.  

Use case diagrams commonly contains 

 • Use cases  

• Actors  

• Dependency, generalization and association relationships. 

 
Fig 5.2 Shows the Use case Diagram 

3. SEQUENCE DIAGRAM: 

A sequence diagram simply depicts interaction between 

objects in a sequential order i.e. the order in which these 

interactions take place. We can also use the terms event 

diagrams or event scenarios to refer to a sequence diagram. 

Sequence diagrams describe how and in what order the 

objects in a system function. Sequence diagrams are used 

to formalize the behavior of the system and to visualize the 

communication among objects. These are useful for 

identifying additional objects that participate in the use 

cases. These diagrams are widely used by businessmen and 

software developers to document and understand 

requirements for new and existing systems. 

 
Fig 5.3 Shows the Sequence Diagram 

6. RESULTS 

Output Screens 

 

Fig6.1 To Run manage.py File 

To run the manage.py file to get the url after that to copy 

the url and paste into web browser and run to get the home 

page. 

 

Fig6.2 Remote User Profile 

In above screen shows the remote user profile. 
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Fig6.3 ML Algorithms Accuracy 

To press the upload button it loads the dataset file and then 

preprocess the dataset after that apply the ml algorithm. The 

algorithms can train the dataset and produce the accuracy. 

 

Fig6.4 Bar chart Graph for ML Algorithms 

In the above screen shows Algorithm Accuracy 

in bar chart graph 
 

 
Fig6.5 Algorithms Accuracy in Line Chart Graph 

In above screen shows the ml algorithms accuracy in line 

chart graph. 

 

Fig6.6 Algorithms Accuracy in Pie Chart Graph 

In above screen shows the ml algorithms accuracy in pie 

chart graph. 

 

Fig6.7 Prediction of  Deep Fake  Content 

After enter into the remote user login to click on predict 

button and then get the above page. 

7. CONCLUSION 

The pharmaceutical drug development process is a long 

and demanding process. Unforeseen ADRs that arise at the 

drug development process can suspend or restart the whole 

development pipeline. Therefore, the a priori prediction of 

the side effects of the drug at the design phase is critical. In 

our Deep Side framework, we use context-related (gene 

expression) features along with the chemical structure to 

predict ADRs to account for conditions such as dosing, 

time interval, and cell line. The proposed MMNN model 

uses GEX and CS as combined features and achieves better 

accuracy performance compared to the models that only 

use the chemical structure (CS) finger- prints. The reported 

accuracy is noteworthy considering that we are only trying 

to estimate the condition-independent side effects. Finally, 

SMILES Conv model outperforms all other approaches by 

applying convolution on SMILES representation of drug 

chemical structure. 
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